Colori e Temperature delle Stelle



Entrando in una stanza scarsamente illuminata ognuno di noi si accorge di una istantanea perdita di sensibilità visiva. La spiegazione di questo fenomeno sta nella struttura dell’occhio umano. Quando la radiazione luminosa arriva sulla retina stimola le terminazioni nervose in essa contenute: i CONI e BASTONCELLI.
I Coni, i quali sono maggiormente concentrati in una zona centrale della retina (detta, Fovea), operano solo in presenza di alti livelli d’illuminazione. Essi inoltre consentono di discriminare i colori e di avere una buona risoluzione dei dettagli.
I Bastoncelli sono la stragrande maggioranza di recettori luminosi presenti nella retina, circa 120 milioni contro i 7 dei coni, e si trovano soprattutto in periferia. Essi operano in condizioni di bassa luminosità e sono insensibili ai colori; per questo motivo nel caso in cui si è in ambiente scotopico (scarsamente illuminato) l’occhio umano non percepisce i colori ma solo sfumature di grigio.
Da questo si capisce che in visione notturna il nostro sistema visivo può fare affidamento solo sui bastoncelli. Questi ultimi per un completo adattamento a condizioni di bassa illuminazione necessitano in genere di un periodo compreso tra i 45 e i 60 minuti.
Trascorso questo intervallo, con il sistema completamente adattato si può notare che:
• La visibilità degli oggetti è maggiore nella zona centrale che in quella periferica del campo visivo questo perché la minima distanza angolare per distinguere separati due oggetti è rappresentata dalla stimolazione di almeno tre campi recettivi. Nella zona centrale della retina i campi recettivi sono formati da un solo fotorecettore, perciò stimolando due coni e lasciando un terzo non stimolato si potrebbe distinguere due oggetti separati. In caso di visione notturna la massima sensibilità si ha nei campi recettivi perifèrici, che però sono molto grandi (formati anche da milioni di bastoncelli) quindi il potere risolutivo è notevolmente più basso
• I colori sono percepiti solo come diverse tonalità di grigio in quanto i bastoncelli (fotorecettori deputati alla visione notturna ) sono insensibili ai colori. Quando l’occhio si è adattato all’oscurità , la sensibilità massima si sposta verso lunghezze d’onda più corte. Mentre i 555 nanometri della visione fotopica corrispondono al colore giallo-verde, i 510 della visione scotopica corrispondono al blu-verde. Al diminuire della luminosità generale dell’ambiente l’occhio perde la sensibilità per le tonalità del rosso e però distingue ancora bene i verdi, gli azzurri e i blu. Al calare delle tenebre , secondo il tipico comportamento dell’occhio umano chiamato “effetto Purkinje”, il rosso appare nero, mentre il verde mantiene ancora la sua cromaticità.
La sensibilità dell’occhio umano in visione notturna è influenzata da diversi fattori quali:
• Età: in genere la visione notturna dei giovani è più acuta di quella degli anziani
• Dieta: una alimentazione ricca di vitamina A migliora la visione crepuscolare, in quanto si comporta da enzima nella produzione di rodopsina.
• Condizioni fisiche: l’adattamento è favorito da buone condizioni di salute generale e in particolare dallo stato di salute dell’occhio
• Ereditarietà: un singolo gene può trasmettere una buona o cattiva capacità d’adattamento

Come si traduce tutto ciò nell’osservazione delle stelle? Ad occhio nudo si riesce a distinguere abbastanza bene il colore di pochissime stelle, le più luminose e generalmente di colore rosso, arancio o giallo. Quelle blu le percepiamo come bianche con qualche sfumatura sull’azzurro. In realtà molto dipende dalla trasparenza del cielo, dal tasso di umidità e dalla presenza di polveri in atmosfera. Quest’ultima componente, in particolare, tende a diventare dominante sotto cieli cittadini e/o vicini ad impianti industriali. In questo caso si assiste ad un generale arrossamento, come avviene per esempio col sole al tramonto.
Passando all’osservazione con telescopi più o meno potenti, riusciamo ad apprezzare meglio i colori ma subentrano alcuni effetti, ottici e di elaborazione del cervello, che possono fuorviare. Se lo strumento non è perfettamente apocromatico (dall’ottica principale agli oculari), il colore è fortemente influenzato dallo spettro secondario, generalmente blu-viola che rende difficile valutare il reale colore della stella. Osservando stelle doppie strette, a tutto ciò si aggiunge un eccessivo “zelo” del cervello che tende a farci vedere la compagna, solitamente un po’ più debole, del colore complementare, anche se per esempio la stella è in realtà bianca (principale gialla, secondaria blu, oppure rossa-verdastra etc.). Come si fa quindi a capire il vero colore della stella?

Breve digressione sui colori dell’arcobaleno

Molte informazioni sulla natura di una sorgente luminosa sono codificate nel cosiddetto “spettro” della luce che, nel caso del Sole, possiamo vedere anche ad occhio nudo quando osserviamo il fenomeno dell’arcobaleno che dimostra in maniera evidente che la luce del Sole, che a noi appare di un unico colore bianco, nelle particolari condizioni che si verificano dopo un temporale, quando ci sono ancora goccioline d’acqua in sospensione in atmosfera ed il Sole è basso, si può scomporre nelle sue componenti che si mostrano come una sequenza di archi contigui proiettati in cielo con colori ed intensità diversi.

Genesi dell’arcobaleno – Cortesia Livio Ruggiero

Alaska. Denali NP. Alaska Range. Rainbow above Muldrow Glacier.

Un fenomeno simile lo possiamo osservare anche se facciamo passare la luce di una lampada ad incandescenza attraverso un prisma: dopo l’attraversamento del prisma la luce bianca, inizialmente collimata in un sottile fascio, uscirà scomposta nelle sue componenti in direzioni diverse e con colori diversi. Un modo per capire cosa succede è di pensare che la nostra lampada in realtà emette una luce che è una mescolanza di radiazioni di vari colori. Nel suo passaggio attraverso il prisma le differenze tra vari colori si evidenziano perché la radiazione, entrando nel prisma, viene rifratta (come fosse “piegata”) ad angoli diversi a seconda della lunghezza d’onda, ovvero a seconda del colore. All’uscita dal prisma si noterà che la radiazione blu viene “piegata” più della rossa in modo che i vari colori emergano ad angoli diversi formando così una specie di arcobaleno.

Rifrazione di un fascio di luce bianca con un prisma

Notiamo ora che abbiamo introdotto il termine “lunghezza d’onda” in associazione al “colore della luce” e quindi abbiamo implicitamente adottato l’idea che la nostra percezione del colore sia legata alla lunghezza d’onda della radiazione o, meglio, alla combinazione di radiazioni di diversa lunghezza d’onda che mescolandosi compongono la luce emessa da una sorgente luminosa.

Siamo più pronti ora ad usare l’espressione “spettro della luce” per indicare la sequenza di intensità e di lunghezze d’onda (e quindi di colori) emesse da una data sorgente luminosa, tenendo presente che le lunghezze d’onda delle radiazioni che producono un colore blu sono tipicamente più piccole di quelle che invece producono il rosso.

Oltre che a scaldare e fornire energia, quale altra informazione porta con sé la luce del Sole?

Per rispondere a questa domanda ci può guidare un’analogia con un pezzo di ferro scaldato da un fabbro: osserviamo che all’aumentare della temperatura il colore del metallo ci appare prima nero, poi rosso, giallo ed infine, alla temperatura più alta, diventa bianco. Il fabbro può usare allora il colore come un termometro per valutare la temperatura del metallo, cosa che effettivamente fa.

Possiamo ripetere questa esperienza in casa osservando come cambia il colore del filamento di una lampada a luminosità variabile. Ci rendiamo conto facilmente che la luce è minima quando il filamento è più freddo e rosso, mentre aumenta man mano che il filamento si riscalda e tende al colore bianco.

Date queste osservazioni possiamo fare due considerazioni:

  1. un corpo emette più radiazione quando è caldo rispetto a quando è freddo;

  1. un corpo caldo appare più bianco di uno freddo, che invece tende più al rosso.

Siccome le stelle sono corpi caldi che emettono luce con modalità analoghe a quelle del filamento della nostra lampada, useremo le considerazioni fatte poc’anzi per dire che il colore delle stelle può essere usato come indicatore della temperatura di superficie, cioè della regione da cui proviene la luce stellare. Assumendo che le stelle si comportino come corpi neri, il massimo della loro emissione, e quindi il loro colore, è funzione della temperatura (Legge di Wien), così come le righe degli elementi presenti, facilmente individuabili proprio con lo spettroscopio.



Spettri di emissione del corpo nero a diverse temperature. Si nota come al crescere di T il massimo di emissione si sposta verso le lunghezze d’onda inferiori, ossia verso il blu, come previsto dalla Legge di Wien (lambdamax*T = costante)

Come valutare la temperatura misurando il colore

Dalle precedenti osservazioni potremmo già dire che le stelle blu hanno superfici più calde delle stelle rosse, ma per passare all’effettiva valutazione della temperatura delle superfici bisogna fare ancora un passo in più. Per questo abbiamo bisogno di riprendere il concetto di “spettro della radiazione” che abbiamo introdotto a proposito della luce dell’arcobaleno e che misura l’andamento della intensità dell’emissione (la brillanza) al cambiare della lunghezza d’onda (il colore).

Nella figura seguente sono rappresentati gli spettri emessi da una sorgente a tre temperature diverse; si nota che, se misuriamo le intensità a due diverse lunghezze d’onda, troviamo valori differenti al variare della temperatura dello spettro. In altre parole il rapporto delle intensità della luce a due diverse lunghezze d’onda cambia al cambiare della temperatura e quindi è una quantità che può essere utilizzata per ricavare la temperatura quando non possiamo porre un termometro a contatto con la nostra sorgente luminosa ma ne possiamo solo osservare lo spettro.

Grafico esplicativo del concetto di Temperatura di colore. Per chiarire le differenze con la Fig.1 precedente si noti che, per evidenziare meglio il comportamento dello spettro al variare della temperatura, abbiamo usato scale logaritmiche. Inoltre le lunghezze d’onda sono state espresse come frequenze usando la relazione: lunghezza d’onda x frequenza = velocità della luce.

Il gioco è fatto: basandoci sull’esperienza acquisita studiando il comportamento della luce di una piccola sorgente nei nostri laboratori abbiamo individuato un metodo applicabile alla luce in generale, e quindi anche alla luce proveniente dalle stelle. Possiamo quindi dire di poter valutare le temperature delle superfici stellari misurando la brillanza di una stella a due diverse lunghezze d’onda della luce, evitando in questo modo di fare un viaggio fino alla stella per mettere un termometro a contatto con la sua superficie! Le temperature valutate con il metodo appena descritto vengono indicate spesso con il nome di “temperature di colore”.

Operativamente si utilizza la fotometria per misurare l’intensità della luce che passa attraverso diversi filtri. Ciascun filtro consente il passaggio solo di una parte specifica dello spettro della luce, respingendo tutte le altre. Un sistema fotometrico ampiamente utilizzato è chiamato sistema Johnson-Cousin UBVRI. Impiega filtri passa banda: U (“Ultravioletto”), B (“Blu”), V (“Visibile”), R (Rosso) e I (infrarosso); ciascuno seleziona diverse regioni dello spettro elettromagnetico.

Il processo di fotometria UBVRI prevede l’utilizzo di dispositivi sensibili alla luce come i CCD accoppiati ad un telescopio puntato verso una stella di cui si misura l’intensità della luce che passa attraverso ciascuno dei filtri individualmente. Questa procedura, per esempio con i filtri UBV, fornisce tre luminosità o flussi apparenti (quantità di energia per cm2 al secondo) designati da Fu, Fb e Fv. Il rapporto dei flussi Fu/Fb e Fb/Fv è una misura quantitativa del “colore” della stella, e questi rapporti possono essere usati per stabilire una scala di temperatura per le stelle. In generale, quanto più grandi sono i rapporti Fu/Fb e Fb/Fv di una stella, tanto più calda è la sua temperatura superficiale.

Imaged from ESO’s La Silla Observatory, this photograph brilliantly captures the full Orion constellation and arcs of gas and dust weaving through the constellation. Just to the left of the the Hunter’s three-star belt is the bright Orion Nebula, one of the most well known star-forming regions.

Ad esempio, Bellatrix in Orione ha Fb/Fv = 1,22, indicando che è più luminosa attraverso il filtro B che attraverso il filtro V. inoltre il suo rapporto Fu/Fb è 2,22, quindi risulta più luminoso attraverso il filtro U. Ciò indica che la stella deve essere davvero molto calda, poiché la posizione del suo picco spettrale deve trovarsi da qualche parte nella banda spettrale del filtro U, o ad una lunghezza d’onda ancora più corta. La temperatura superficiale di Bellatrix (determinata confrontando il suo spettro con modelli dettagliati che tengono conto delle sue linee di assorbimento) è di circa 25.000 Kelvin.

Possiamo ripetere questa analisi per Betelgeuse. I suoi rapporti Fb/Fv e Fu/Fb sono rispettivamente 0,15 e 0,18, quindi è più luminosa in V e più fioca in U. Quindi, il picco spettrale di Betelgeuse deve trovarsi da qualche parte nella banda spettrale del filtro V, o ad un valore maggiore di lunghezza d’onda. La temperatura superficiale di Betelgeuse è di soli 2.400 Kelvin.

Gli astronomi preferiscono esprimere i colori delle stelle in termini di differenza di magnitudine, piuttosto che di rapporto di flussi. Pertanto, tornando alla blu Bellatrix abbiamo un indice di colore pari a

B – V = -2,5 log (Fb/Fv) = -2,5 log (1,22) = -0,22,

Allo stesso modo, l’indice di colore per la rossa Betelgeuse è

B – V = -2,5 log (Fb/Fv) = -2,5 log (0,18) = 1,85

Gli indici di colore, come la scala delle magnitudini, vanno all’indietro. Le stelle calde e blu hanno valori B-V più piccoli e negativi rispetto alle stelle più fredde e rosse.

Un astronomo può quindi utilizzare gli indici di colore di una stella, dopo aver corretto l’arrossamento e l’estinzione interstellare, per ottenere una temperatura accurata di quella stella.

Il Sole con una temperatura superficiale di 5.800 K ha un indice BV di 0,62.

Domenico Licchelli e Francesco Strafella

La cometa C/2014 Q2 (Lovejoy) e le sue compagne di avventure – Anna Galiano

Comet C/2014Q2 Lovejoy taken by Gerald Rhemann on January 21, 2015 @ Puchenstuben, Lower Austria

La cometa C/2014 Q2 (Lovejoy) ha animato le ultime notti di Dicembre 2014 e ha permesso a tutti gli appassionati di astronomia di salutare il nuovo anno ammirando la sua spettacolare chioma e lunga coda. Il passaggio della Lovejoy nei cieli notturni è pertanto il fenomeno astronomico più ricercato di questo inizio 2015. Le comete sono corpi minori del Sistema Solare costituiti essenzialmente da aggregati di polveri e ghiacci. Quando questi corpi si avvicinano al perielio (ossia sono nella posizione di minima distanza dal Sole sulla propria orbita), la sublimazione dei ghiacci e l’espulsione delle polveri generano un’atmosfera gassosa attorno al nucleo, definita chioma, che ha solitamente un diametro dell’ordine di 104 – 105 km, e caratterizzata da una densità compresa tra 104 e 106 molecole/cm3. Il vento solare interagisce con la chioma e spinge il gas e le polveri in una direzione opposta al Sole, dando origine principalmente alle code di ioni e di polveri. Le code di ioni sono composte da particelle elettricamente cariche che si dispongono su di una traiettoria più o meno rettilinea modellata dal campo magnetico presente, mentre le code di polveri si presentano con una forma arcuata, che è il risultato della combinazione della pressione di radiazione solare e del moto orbitale della cometa. Infatti, le particelle solide espulse dal nucleo, poiché sono più pesanti rispetto agli ioni, sono attratte gravitazionalmente dal Sole e risentono anche della velocità orbitale della cometa. Pertanto, a seconda della massa, esse subiscono una deviazione differente e danno origine a quella disposizione della coda detta “a scimitarra”. Le code possono raggiungere lunghezze di milioni di km ed una larghezza compresa tra 1 e 2 milioni di km mentre la densità può variare mediamente tra 10 e 100 molecole/cm3.

C/2014 Q2 è stata osservata per la prima volta da Terry Lovejoy in Australia, divenendo la quinta cometa scoperta da questo esperto cacciatore di comete. Il metodo usato da Lovejoy per identificare questi corpi minori consiste nell’esaminare con attenzione il cielo orientale prima dell’alba e quello occidentale dopo il tramonto, facendo uso di una camera CCD al fuoco di un telescopio Schmidt-Cassegrain con un diametro di 20 cm. La tecnica è relativamente semplice. Lovejoy acquisisce immagini in sequenza di numerose porzioni di cielo distanziate di opportuni intervalli di tempo, dopo di che le analizza con un software in grado di effettuare un blinking tra le riprese riuscendo in questo modo ad individuare un eventuale oggetto in movimento, non presente nei vari cataloghi disponibili.

Tripletta di immagini del campo stellare osservato da Terry Lovejoy, grazie alle quali ha individuato la cometa C/2014 Q2.

In questo modo, il 17 Agosto 2014, analizzando le tre immagini del campo stellare in Figura 1, Lovejoy è stato in grado di individuare quella cometa che, spostandosi in senso antiorario rispetto alle stelle fisse, ha poi preso il suo nome. Nel comunicato ufficiale ha annunciato la scoperta con queste parole: “Oggetto di piccole dimensioni, ben condensato, con un diametro di 15” (secondi d’arco) ed una breve e debole coda di 1’ (primo d’arco) dalla magnitudine apparente di 15, in un campo affollato di stelle”.

Comet C/2011 W3 (Lovejoy) re-emerging from behind the Sun on Dec. 15, 2011. (NASA/SDO)

Terry Lovejoy è stato lo scopritore anche della cometa C/2011 W3 (Lovejoy). Scoperta il 27 Novembre 2011, è famosa per essere sopravvissuta ad un incontro molto ravvicinato con il Sole. Infatti C/2011 W3 (Lovejoy) fa parte delle comete Kreutz Sungrazing (conosciute anche come “comete radenti”), ossia caratterizzate da orbite con un perielio molto prossimo al Sole. L’astronomo tedesco Heinrich Kreutz dimostrò che queste particolari comete sono i resti di una cometa di dimensioni maggiori frammentatasi diversi secoli fa e che continuano a muoversi su orbite correlate tra loro. Le comete radenti, avvicinandosi così pericolosamente al Sole, sono in grado di sviluppare una chioma e delle code talmente luminose da essere visibili in pieno giorno e sono destinate pertanto a divenire “Grandi Comete”. Difficilmente però queste comete riescono a sopravvivere al passaggio al perielio, poiché inevitabilmente vengono maltrattate gravitazionalmente dalla nostra stella e spesso disintegrate dalle forze mareali. Eccezion fatta, per esempio, per la Grande Cometa del 1843 e per la C/2011 W3 (Lovejoy). Quest’ultima, in particolare, ha raggiunto il perielio il 16 Dicembre 2011 penetrando nella corona solare fino a 140000 km dalla superficie del Sole. Mentre il mondo scientifico osservava l’evento aspettandosi una sua probabile disintegrazione, la cometa ha sorpreso tutti riuscendo ad allontanarsi dalla nostra stella (Figura 2) e proseguendo lungo la propria orbita.

Descrizione della traiettoria della cometa Lovejoy. Si nota come l’inclinazione orbitale sia quasi ortogonale al piano del Sistema Solare, pari a 80.3 °.

Analogamente la cometa C/2014 Q2 sta facendo parlare di sé gli appassionati di astronomia di tutto il mondo, principalmente grazie alla sua spettacolare coda di ioni. La denominazione attribuitale indica che è una cometa a lungo periodo, ossia con un periodo orbitale maggiore di 200 anni e con un’inclinazione dell’orbita casuale. Infatti la sua inclinazione orbitale rispetto al piano del Sistema Solare è di 80.3° (Figura 3), suggerendo la sua probabile provenienza dalla Nube di Oort, il guscio sferico costituito probabilmente da parecchi miliardi di nuclei cometari che circonda il Sistema Solare e situato ben oltre l’orbita di Nettuno, tra 30000 AU (Astronomical Unit) e 100000 AU dal Sole, quasi a metà strada tra la nostra stella e quella a noi più vicina, Proxima Centauri (distante 250000 AU dal Sole). In più, l’elevata eccentricità (0.998) è un’ulteriore prova a sostegno della Nube di Oort come sito di provenienza della Lovejoy. Solitamente le comete a lungo periodo sono caratterizzate da un nucleo irregolare con dimensioni comprese tra 5 e 10 km, ma nel caso della Lovejoy non si sono potute effettuare analisi accurate a causa della chioma che lo nasconde alla visione diretta. Dotata di un semiasse maggiore di 578.50 AU, non è la prima volta che la cometa Lovejoy giunge nel Sistema Solare interno: il suo periodo orbitale originale era di 11500 anni, pertanto potrebbe essere stata osservata dai nostri antenati del Mesolitico che all’epoca utilizzavano la pietra per costruire armi e utensili. La cometa è giunta nuovamente nella regione planetaria nel 1950 ma questa volta le perturbazioni gravitazionali da parte dei pianeti maggiori hanno modificato la sua orbita cosicché, una volta abbandonato il Sistema Solare (nel 2050), il periodo orbitale diverrà di 8000 anni e il suo ritorno è dunque previsto per il 10000 d.C.

Quando Lovejoy ha osservato per la prima volta la cometa, la notte del 17 Agosto 2014, questa attraversava la costellazione australe della Poppa con una magnitudine apparente attorno alla 15-esima. A Dicembre era di settima, divenendo facilmente individuabile con un piccolo telescopio o un binocolo. Il nucleo cometario circondato dalla chioma, che negli strumenti ottici appare come una sfera sfocata, è diventato in seguito visibile ad occhio nudo sotto cieli bui. A tal proposito, è bene ricordare che il nostro occhio potenzialmente riesce a rilevare corpi celesti di magnitudine attorno alla sesta, ma in presenza di inquinamento luminoso questo valore è solo teorico. Nei primi giorni di Gennaio la cometa ha raggiunto una magnitudine apparente di 5, passando ad una distanza minima di 0.469 AU (circa 70000000 km) dalla Terra il 7 Gennaio. Il 12 Gennaio la magnitudine stimata di 3.8 l’ha resa un oggetto relativamente facile ma in ambiente cittadino è stato possibile osservarla solo grazie all’utilizzo di strumenti ottici. Nei giorni successivi, poiché la cometa si allontanava sempre di più dalla Terra la sua magnitudine apparente ha iniziato ad aumentare. Quando la cometa raggiungerà il perielio, il 30 Gennaio, passando ad una distanza di 1.29 AU (circa 193000000 km) dal Sole, risulterà sempre più difficile osservarla. Dopo aver attraversato la porzione di cielo tra la costellazione di Andromeda e Perseo a Febbraio, sfiorerà la stella polare verso fine Maggio con una magnitudine apparente prevista pari a 12.

Cometa Lovejoy e l’ammasso globulare M79

Le spettacolari foto scattate da tutto il mondo riprendono l’affascinante cometa durante il suo viaggio verso il Sole. In particolare, nella notte tra il 28 e il 29 Dicembre, C/2014 Q2, attraversando la costellazione della Lepre, è transitata vicino all’ammasso globulare M79. Di seguito sono riportati 5 immagini, acquisite in remoto in Namibia da Gerald Rhemann, che riprendono la cometa nelle notti tra il 21 Dicembre e il 28 Dicembre.

Comet C/2014Q2 Lovejoy Taken by Gerald Rhemann on December 28, 23, 21, 22, 27 2014 @ Farm Tivoli, Namibia, SW-Africa

Come già accennato è evidente che la chioma e le code della cometa C/2014 Q2 hanno colori differenti. Da un lato la chioma ha un colore verdastro, mentre la coda di ioni e la coda di polveri hanno rispettivamente un colore tendente al blu ed un tenue bianco giallastro.

“It was interesting that while taking the pictures it was possible to see changes in the tail/streamers”. Adam Block/Mount Lemmon SkyCenter/University of Arizona

Per spiegare queste differenti colorazioni si deve innanzitutto precisare che il nucleo roccioso di una cometa in generale è caratterizzato da un basso potere riflettente (detta albedo). Ossia mentre il ghiaccio puro riflette il 60-80% della radiazione solare incidente, il nucleo riesce a rifletterne meno del 10%. Ora, viene da chiedere, com’è possibile che il nucleo cometario, pur essendo composto da ghiaccio, rifletta una così ridotta percentuale di radiazione solare? In realtà, da quando questi agglomerati rocciosi e ghiacciati si sono formati, circa 4.5 miliardi di anni fa, sono stati bombardati da raggi cosmici, vento e radiazione ultravioletta solare. Tali interazioni hanno innescato dei meccanismi come la fotodissociazione: in questo processo la radiazione elettromagnetica scinde le molecole ghiacciate, dotate di un’elevata albedo, che compongono le sostanze volatili semplici del nucleo (CO, CO2, H2O, CH4, NH3) in una miscela di sostanze organiche con basso potere riflettente. Questo fenomeno permette anche la formazione di una crosta solida e porosa, dalle cui fratture fuoriescono (quando la cometa è in avvicinamento al Sole) getti di gas e polveri localizzati, innescando così l’attività cometaria e dunque la formazione della chioma.

L’indagine spettrale è il metodo maggiormente utilizzato per estrarre informazioni di natura chimica dalle comete. Lo studio di questi corpi minori ha aiutato a comprendere le condizioni chimico-fisiche che caratterizzavano il Sistema Solare nei primi periodi della sua formazione, avvenuta 4.5 miliardi di anni fa. Infatti, le comete sono dei corpi rocciosi e ghiacciati rimasti sostanzialmente inalterati sin dalla loro origine e pertanto sono considerati i “mattoni primordiali” del Sistema Solare attuale. Molto probabilmente si sono generati nelle regioni del Sistema Solare esterno in prossimità di Urano e Nettuno ed in seguito sono stati trasportati nella Nube di Oort a causa dell’interazione gravitazionale da parte di questi pianeti gassosi. Le analisi spettroscopiche, già a partire dagli anni ’40 del secolo scorso, hanno permesso di individuare la presenza di radicali e ioni chimicamente instabili all’interno dei nuclei cometari. Si ritiene che questi siano prodotti dalla fotodissociazione di ghiacci, molecole stabili e strutturalmente complesse identificate come “molecole genitrici”. Di conseguenza ai radicali ed agli ioni è stata attribuita la denominazione di “specie figlie”. Le molecole individuate erano: CO, CH4, CO2, N2, NH3, NH, CN o C2N2 (cianogeno), OH, CH3OH (metanolo), C2H6 (etano), HCOOH (acido formico), H2CO (formaldeide).

Mentre il nucleo può essere osservato per mezzo della ridotta luce solare riflessa, ciò che rende visibile la chioma è sia il processo di diffusione della luce da parte dei gas e delle polveri che la compongono, sia il fenomeno della fluorescenza innescato dalle molecole che sublimano dal nucleo sottostante. Queste molecole, infatti, transitando dallo stato solido a quello gassoso a causa del flusso solare che ricevono, assorbono la componente ultravioletta della radiazione (corrispondente all’intervallo dello spettro elettromagnetico con lunghezza d’onda compresa tra 100nm e 400nm), si eccitano e si diseccitano, emettendo radiazione con una lunghezza d’onda maggiore, corrispondente alla luce visibile tra 400nm e 700nm. Di conseguenza la chioma cometaria è caratterizzata da uno spettro continuo (dovuto alla diffusione della luce solare da parte delle polveri e dei gas) su cui sono sovrapposte delle righe e delle bande di emissione relative alle molecole che danno luogo al fenomeno della fluorescenza.

La polvere cometaria è in realtà composta da due componenti: i silicati (soprattutto olivina) con una densità media di 2.5 g/cm3 e le cosiddette “particelle CHON” ossia composte da Carbonio, Idrogeno, Ossigeno e Azoto, (C, H, O, N), con una densità media di 1 g/cm3. È stato dimostrato come la presenza di queste due componenti dipenda dalla distanza della cometa dal Sole: mentre la prima aumenta dal 10% al 97% quando la cometa si avvicina al perielio, la seconda diminuisce dal 90% al 3%. Solitamente le specie figlie possono essere individuate esaminando uno spettro cometario nel range del visibile, mentre le molecole genitrici sono più facilmente individuabili analizzando la regione dello spettro elettromagnetico relativa all’IR e alle onde radio. Le principali specie figlie rilevate in una cometa sono il radicale ossidrile (OH), l’ossido di carbonio (CO) e il cianogeno (CN). È stato dimostrato come OH sia il prodotto della dissociazione della molecola genitrice H2O, il principale costituente del nucleo cometario. Dall’analisi spettrale della cometa Hale-Bopp, meglio conosciuta come Grande Cometa del 1997, si sono ottenute importanti informazioni sulle molecole genitrici di queste tre specie. Quando la cometa era a 700 milioni di km (4.66 AU) dal Sole e dalla Terra tra Marzo e Aprile 1996, si è riusciti a rivelare una grande emissione di CO2 tramite la presenza della riga spettrale a 4.25 micron, ritenendola la molecola genitrice di CO. Il cianogeno CN sembra essere invece il segno dell’inizio dell’attività cometaria, poiché è legato alla dissociazione della crosta del nucleo. Quando la Hale-Bopp era a 6.82 AU (30 Agosto 1995) dal Sole è stata stimata, grazie alla presenza della riga di emissione attorno a 380nm, una quantità di CN pari allo 0.3% rispetto al CO. L’8 Aprile 1996, quando la cometa era a 4.7 AU, oltre al CN è stata notata la presenza dell’acido cianidrico (HCN), analizzando lo spettro cometario nel range corrispondente alle onde radio. CN e HCN erano presenti in simili abbondanze, di conseguenza venne dedotto che il cianogeno era il prodotto della dissociazione di HCN.

Sopra è riportato un grafico che mostra chiaramente la diversa abbondanza di molecole prodotte mentre la cometa Hale-Bopp si avvicinava al Sole, raggiungendo il perielio il 1 Aprile 1997. Lo studio è stato effettuato, sfruttando diversi radiotelescopi, da un team di ricercatori capeggiati da N. Bivier (Osservatorio di Parigi) nel periodo compreso tra Agosto 1995 (quando la cometa era a circa 6.9 AU dal Sole) e Gennaio 1997 (quando Hale-Bopp era a 1.4 AU dal Sole). Fino ad una distanza di 4.7 AU l’attività cometaria era caratterizzata principalmente dall’emissione di CO, prodotto dalla fotodissociazione di CO2. Il radicale OH ha prevalso sul CO quando la cometa ha raggiunto la distanza di 3 AU dal Sole. A distanze maggiori OH era presente in minima parte poiché la molecola genitrice del radicale, ossia l’acqua, a causa della ridotta temperatura, si staccava da nucleo cometario sotto forma di particelle di ghiaccio e non permetteva la dissociazione che invece è avvenuta in seguito. Tra 3 e 2 AU l’emissione di CO ha subito un’attenuazione: una possibile spiegazione di tale fenomeno consiste nell’ipotizzare una trasformazione della crosta cometaria da ghiaccio amorfo (permeabile) a ghiaccio cristallino (meno permeabile), ostacolando la fuoriuscita del monossido di carbonio. Inoltre, ad una distanza dal Sole inferiore a 3 AU, il metanolo (CH3OH) tendeva ad aumentare lievemente. Secondo diversi studi, l’abbondanza di metanolo nei nuclei cometari potrebbe suggerire la provenienza delle comete. Se si nota, tramite analisi spettrale, un’abbondanza di metanolo superiore al 3% rispetto all’abbondanza di acqua, molto probabilmente le comete provengono dalla Nube di Oort. Se invece la quantità di metanolo è inferiore al’1% rispetto all’acqua, la regione di provenienza è, presumibilmente, la più vicina Fascia di Kuiper. Per gli altri composti chimici l’aumento di emissione è risultata essere proporzionale all’avvicinamento al Sole.

Uno studio condotto da McKay A. J. et al., nel 2011 aveva lo scopo di comprendere se l’emissione di molecole potesse variare lungo la direzione di avvicinamento al Sole rispetto alla direzione opposta. Acquisendo lo spettro della cometa periodica 103P/Hartley nel visibile, prima e dopo il suo passaggio al perielio (avvenuto il 28 Ottobre 2010), si è potuto stimare la quantità di CN, C3, C2, CH ed NH2 emessi nella direzione verso il Sole (individuati dalle linee tratteggiate) e nella direzione opposta al Sole (individuati dalle linee continue). Analizzando gli spettri del cianogeno (CN) sembra che non ci sia alcuna asimmetria nella sua emissione. Infatti CN viene emesso dal nucleo cometario con uguale abbondanza sia lungo la direzione del Sole che in quella opposta. L’emissione di C3, C2, CH ed NH2 mostra, invece, delle asimmetrie nelle due direzioni. In particolare, sembra che C2 venga emesso nella direzione antisolare con una quantità superiore ad un fattore 2 rispetto a quella emessa lungo la direzione del Sole. Anche C3 viene emesso maggiormente nella direzione opposta al Sole, anche se il fattore di emissione è inferiore a 2. Come si evince dal grafico, inoltre, l’emissione di CH della cometa 103P/Hartley sembra essere quasi assente nella direzione del Sole, la quale avviene quasi totalmente lungo la direzione antisolare.

Studi così approfonditi sono in fase di realizzazione per la cometa C/2014 Q2, ma lo spettro visibile in bassa risoluzione allegato, acquisito l’1 Gennaio 2015 presso l’Osservatorio Astrofisico R.P.Feynman mostra il tipico aspetto. Si notano i picchi di emissione associati alle molecole che, sublimando dal nucleo quando la cometa è in avvicinamento al Sole, generano il fenomeno della fluorescenza. I picchi di emissione si manifestano a specifiche lunghezze d’onda a seconda delle molecole responsabili del fenomeno. Infatti i picchi a 4700A e 5100A individuano l’emissione di fluorescenza dovuta al C2 che è responsabile del colore verde della chioma. Il picco di emissione dovuto al CN a 3880A suggerisce che anche il cianogeno contribuisce alla colorazione della chioma fornendo una tonalità violacea. Il nostro occhio, però, non è molto sensibile a tale lunghezza d’onda e non è facile percepire questo colore. In più l’altezza del picco individua l’intensità dell’emissione, strettamente connessa con l’abbondanza dell’elemento chimico.

Come accennato prima la coda di ioni è solitamente azzurrognola e la coda di particelle cariche della cometa Lovejoy non è da meno: lo spettro è composto da righe di emissione associate alla fluorescenza da parte degli ioni cometari, molto probabilmente ioni d’acqua H2O+ e ioni di monossido di carbonio CO+. La coda di polveri è invece caratterizzata da uno spettro continuo poiché le polveri diffondono la radiazione solare con uguale intensità a tutte le lunghezze d’onda.

La Lovejoy ci terrà compagnia ancora per un po’ e se il meteo sarà clemente potremmo continuare ad ammirarla e a studiarla in dettaglio.

Osservare una cometa al telescopio è un’emozione intensa, non solo per gli specialisti ma anche per chi nutre una forte passione per gli oggetti celesti e le fredde notti invernali non sono di certo un ostacolo insormontabile.

Chi dovesse perdersi lo spettacolo potrebbe riprovarci fra 8000 anni, sempre se è in possesso dell’Elisir di lunga vita!

Salviamo il cielo stellato. Il Progetto Globe at night – Anna Galiano

Occhi al cielo contro l’inquinamento luminoso: Globe at Night

Il 20 Dicembre 2013 l’Assemblea Generale delle Nazioni Unite ha proclamato il 2015 Anno internazionale della Luce e delle tecnologie basate sulla Luce (IYL 2015). Quando si parla di luce in realtà non ci si sta limitando alla sola componente visibile dello spettro elettromagnetico, ma alla “luce cosmica”. Questa comprende l’intero spettro elettromagnetico, composto da raggi gamma, raggi X, radiazione UV, luce visibile, radiazione infrarossa, microonde e onde radio.

Queste radiazioni vengono emesse da vari oggetti astronomici presenti nell’Universo e raggiungono la Terra ogni giorno. Lo  studio di queste componenti elettromagnetiche ha permesso di migliorare la conoscenza del nostro Universo e comprendere i meccanismi che avvengono anche a milioni di anni luce (a.l.) di distanza dalla Terra (1 a.l. è la distanza che percorre la luce del Sole nel vuoto in un anno, ossia circa 9*1012km).

La luce solare riflessa da Giove e dai suoi 4 satelliti ha permesso a Galileo Galilei, nel 1610, di provare la veridicità della teoria copernicana: così come i satelliti Io, Europa, Ganimede e Callisto orbitavano attorno al pianeta gigante, così la Terra e gli altri pianeti allora noti (da Mercurio a Saturno) orbitavano attorno al Sole. In tal modo contraddisse con non poche conseguenze il sistema tolemaico sostenuto dalla Chiesa, secondo il quale vi era la Terra al centro dell’Universo ed ogni altro corpo celeste vi ruotava attorno.

Nel 2015, inoltre, ricorre il centenario della Teoria della Relatività Generale di Elbert Einstein. Era il 1915 quando Einstein propose una nuova visione dello spazio e del tempo: fino ad allora prevaleva la concezione di Newton, secondo cui lo spazio e il tempo erano due concetti assoluti e indipendenti l’uno dall’altro. Einstein invece suggerì come lo spazio e il tempo fossero dinamici e potessero inoltre venir deformati dalla presenza di oggetti fortemente massivi. Di conseguenza spiegò l’esistenza della forza di gravità presente sulla Terra: questa è dovuta alla deformazione dello spazio-tempo causata dalla massa del Sole. In più Einstein sosteneva che a causa di questa deformazione, un raggio di luce che viaggia in prossimità del Sole subisce una deflessione nella propria traiettoria di 1.75” (secondi d’arco). Durante l’eclissi di Sole del 1919 l’astrofisico Artur Eddington effettuò delle misurazioni che dimostrarono come la luce proveniente da una stella apparentemente vicina al Sole era deviata proprio di 1.75”. Questo fenomeno è noto come lensing gravitazionale e fu la prima prova dell’esattezza della teoria di Einstein.

 In quest’anno dedicato alla “luce cosmica” la comunità scientifica cercherà di sensibilizzare il pubblico di tutto il mondo sull’importanza della radiazione elettromagnetica e sulle informazioni che essa trasporta riguardo i corpi celesti che la emettono. Si vuole, inoltre, sottolineare come le tecnologie basate sulla luce siano in grado di migliorare la qualità della vita sia dei Paesi già sviluppati che delle popolazioni più disagiate.

Come è ben noto, la tecnologia laser è ormai uno strumento utilizzato in diversi campi. Il laser sfrutta l’emissione di luce stimolata (un processo in cui dall’interazione tra un fotone ed un atomo eccitato, si determina la transizione dell’atomo allo stato fondamentale e l’emissione di due fotoni) per amplificare la luce: laser è infatti l’acronimo di Light Amplification by Stimulated Emission of Radiation (Amplificazione di Luce per mezzo di Emissione Stimolata di Radiazione). Tale strumento ha un largo uso in medicina per la correzione di alcuni difetti visivi (miopia o ipermetropia) o per la rimozione delle cellule anomale nei tumori in fase iniziale, oltre ad essere ormai da anni utilizzato per la lettura e masterizzazione di CD e DVD. Il laser permette inoltre di trasferire dati da un computer ad un altro attraverso le fibre ottiche, risultando essere il mezzo di trasmissione più veloce sinora inventato.

L’invenzione delle luci LED (acronimo di Light Emitting Diode) è stato un altro grande passo della tecnologia. Questi particolari diodi sono composti da un materiale semiconduttore in cui è presente una regione composta da elettroni (regione di conduzione) ed una zona priva di particelle cariche, ossia ricca di lacune (detta appunto regione di vacanza). La luce che viene emessa nei LED proviene dalla transizione dell’elettrone dalla regione di conduzione a quella di lacuna. Oggigiorno i LED sono utilizzati per illuminare gli schermi a cristalli liquidi (LCD) dei televisori e dei cellulari, oltre a rappresentare l’elemento di illuminazione dei lampioni moderni.

Un’altra tecnologia  basata sulla luce e molto diffusa nei Paesi sviluppati è data dai pannelli solari che vengono utilizzati anche per fornire energia alle abitazioni private sfruttando la luce proveniente dal Sole, la nostra principale fonte di energia. Diverse organizzazioni no-profit stanno lavorando per sviluppare nuove tecnologie eco-sostenibili da adottare nei Paesi più disagiati dove le popolazioni sono ancora costrette a vivere al buio. Se da un lato ci sono popoli che purtroppo vivono ancora privi di illuminazione nelle strade o nelle case, dall’altro ci sono Paesi industrializzati che sprecano l’energia elettrica senza neanche rendersene conto. Per  questo motivo un altro importante tema dell’IYL2015 è la riduzione dell’inquinamento luminoso e dello spreco di energia che ne deriva.

L’inquinamento luminoso è la diffusione, da parte dell’atmosfera, di luce proveniente da sistemi di illuminazione pubblici e privati che illuminano, senza alcuna necessità, il cielo e il terreno.

In particolare, nell’art.1 della Legge Regionale della Puglia 15/2005 si legge scritto:“si considera inquinamento luminoso ogni alterazione dei livelli di illuminazione naturale e, in particolare, ogni forma di irradiazione di luce artificiale che si disperda al di fuori delle aree a cui essa è funzionalmente dedicata, in particolar modo se orientata al di sopra della linea dell’orizzonte”.

La legge regionale della Puglia LR 15/2005 è stata promulgata per far fronte all’eccessivo spreco di illuminazione artificiale, imponendo delle procedure che dovrebbero essere rispettate dall’intera regione. Innanzitutto questa legge prevede che tutti i sistemi di illuminazione siano dotati di apposite coperture in modo da non far diffondere la luce delle lampadine verso il cielo, ma vengano convogliate solo verso il terreno, l’unica area che debba essere illuminata.

 Nell’immagine si nota come il primo lampione, privo di copertura superiore, diffonda la luce nell’area circostante, illuminando sia il cielo che il terreno. Nell’ultimo sistema di illuminazione, invece, la luce è completamente convogliata verso il terreno, preservando il cielo e fornendo una migliore illuminazione nell’area sottostante. Anche se il costo di installazione di questi lampioni moderni dovesse essere elevato, la spesa verrebbe poi pienamente recuperata grazie al risparmio energetico che ne deriverebbe, dato che possono essere utilizzate lampadine con una minore potenza. È stato dimostrato come il primo genere di illuminazione sprechi tra il 30 e il 75 % di potenza elettrica verso il cielo. Inoltre la quantità di luce che viene diffusa verso l’alto dai vecchi sistemi di illuminazione rappresenta uno spreco di 22000 GW/h che tradotto in termini di moneta, equivale a 2 miliardi di dollari l’anno letteralmente “buttati in aria”.

Questa normativa della regione Puglia impone, inoltre, che tutti gli edifici (tranne quelli di valore architettonico o storico) vengano illuminati dall’alto verso il basso, con dei sistemi in grado di ridurre la potenza delle lampade nelle ore notturne.  Per quanto riguarda l’illuminazione pubblicitaria sono stati assolutamente vietati fasci roteanti o fissi rivolti verso il cielo; gli unici lampioni permesse sono quelli che non convogliano il fascio luminoso al di fuori del cartellone pubblicitario. È stato consigliato l’utilizzo di sistemi di illuminazione dotati di sensori nelle aree che non sono abitualmente frequentate: in questo modo l’illuminazione si attiva solo quando i sensori rilevano il movimento di una macchina o di un uomo.

Se in Italia venisse adottata una legge contro l’inquinamento luminoso si otterrebbe un risparmio energetico annuo stimato di circa 250000000€. Di conseguenza si risparmierebbero 465000 tonnellate di combustibile. La produzione di energia elettrica richiede la combustione di materie prime e con le apposite misure anti-inquinamento non verrebbero immesse 1360000 tonnellate di anidride carbonica (CO2) nell’ambiente e si risparmierebbero 1480000 tonnellate di Ossigeno bruciato. L’aria che respireremmo sarebbe più pulita ed equivarrebbe a piantare una foresta di alberi di alto fusto  con un’estensione di 200 000 ettari. In Italia non vi è una legge contro l’inquinamento luminoso ma tutte le regioni, fatta eccezione per la Calabria e la Sicilia, hanno adottato delle misure per limitare il problema. 

Attualmente l’illuminazione nelle città è così eccessiva che il cielo notturno è velato da un alone rossastro, non permettendo così di ammirare le stelle e la Via Lattea né dal centro della città, né dalle zone più periferiche. In meno di dieci anni, l’aumento dell’inquinamento luminoso ha ridotto drasticamente le zone in cui è possibile osservare le miriadi di stelle che compongono la Via Lattea, corrispondenti al 30% del territorio italiano. 

La presenza delle luci parassite (immagine a sinistra) non permette di osservare la Via Lattea, che è invece ben visibile in assenza di illuminazione (immagine a destra). La Via Lattea, come già descritto nell’articolo Il Braccio di Orione è la galassia di cui fa parte il nostro Sistema Solare. Composta da circa 400 miliardi di stelle, gas e polvere, ha un diametro maggiore di 100000 a.l. e la Terra insieme agli altri pianeti e corpi minori del Sistema Solare si trova ad una distanza di 30000 a.l. dal centro galattico. In realtà la Via Lattea è una galassia a spirale barrata: presenta un nucleo barrato dal quale si dipartono dei bracci a spirale logaritmica, i più importanti dei quali sono il Braccio di Perseo e il Braccio dello Scudo-Centauro. Il Sistema Solare giace nel Local Arm, o Braccio di Orione, un braccio complementare che prende il nome dalla costellazione omonima in esso presente. Attorno al centro galattico vi è un gran numero di stelle vecchie e fredde (con temperature intorno ai 3000°K) che si dispongono in maniera sferoidale, generando il cosiddetto bulge, la regione più luminosa della Via Lattea. Misure radio hanno permesso di individuare una forte sorgente localizzata nel centro galattico e analizzando il movimento dei corpi attorno ad essa, si ipotizza che l’oggetto compatto al centro della Via Lattea sia un buco nero supermassivo, con una massa pari a 4*106M* (M* è la massa del Sole, pari a  2*1033g). Osservando la Via Lattea dalla Terra, si nota che il centro della galassia è osservabile nella costellazione del Sagittario ed è per questo motivo che il buco nero viene identificato come Sagittarius A*. 

Oltre a comportare uno spreco di energia e costi e l’impossibilità di godere delle bellezze naturali che il cielo ci offre, l’inquinamento luminoso può provocare danni all’uomo e al mondo animale se non si adottano le misure necessarie per ridurlo.

La luce che viene diffusa in tutta l’area circostante dai lampioni non a norma non viene ben focalizzata sulla retina dei nostri occhi, di conseguenza crea un forte bagliore che costringe le persone (e soprattutto gli anziani) a distogliere lo sguardo dalla fonte di questo disagio (chiamato disability glare). Ciò comporta una pericolosa distrazione per chi guida. Molti degli incidenti stradali avvengono in strade illuminate ed è stato inoltre stimato come avvengano molti più incidenti nelle gallerie dotate di illuminazione eccessiva rispetto a quelle non illuminate.

La capacità del nostro occhio di visualizzare le immagini dipende dalla produzione di una sostanza chiamata rodopsina, di colore rosso molto intenso. Questo liquido sbianca repentinamente quando è esposto alla luce: pertanto l’illuminazione eccessiva o erroneamente orientata può distruggere tutte le riserve accumulate e creare una cecità temporanea, di all’incirca qualche secondo. L’uomo ritorna a vedere quando l’occhio produce nuovamente una quantità sufficiente di rodopsina, ma quei secondi di cecità spesso sono la causa di gravi incidenti stradali. Gli scienziati hanno inoltre scoperto come l’uomo produca un particolare ormone (melatonina) in assenza di luce e pertanto durante le ore di sonno. Tale ormone regola il ciclo diurno delle nostre attività sistemiche. L’illuminazione eccessiva delle strade o delle vicine abitazioni, che può filtrare anche nelle nostre stanze durante la notte, può ridurre la produzione di melatonina e le nostre attività sistemiche possono risentirne negativamente. Inoltre, il prolungamento del giorno per via dell’illuminazione artificiale può limitare la nostra abilità nel dormire e nello svegliarsi ad orari opportuni. Di conseguenza si può generare uno sfasamento nelle attività biologiche che avvengono nel nostro organismo durante le 24 ore (ritmo circadiano).

L’insonnia, lo stress e la depressione sono disagi che possono essere causati dall’alterazione del ritmo circadiano. Una luminosità elevata non è sinonimo di sicurezza: molti pensano che se illuminano le proprie case con illuminazioni non schermate i criminali non osano avvicinarsi. Nell’immagine sottostante, invece si nota come l’eccessiva luminosità abbagli gli occhi  e crei un forte contrasto con la zona in ombra, tale da non far notare la presenza di intrusi nascosti nell’area meno illuminata. I lampioni dotati di schermatura, invece, faciliterebbero la nostra visione.

Nella prima immagine la forte luminosità derivante dalla lampadina non schermata non permette di vedere l’uomo nascosto nel buio, facilmente visibile invece nell’immagine sottostante in cui il fascio luminoso è schermato dalla mano.

Gli animali sono altre vittime incolpevoli dell’inquinamento luminoso: infatti le loro attività vitali come l’accoppiamento, la ricerca del cibo e la migrazione sono strettamente correlate con la durata della notte. L’eccessiva illuminazione provoca un disagio nelle loro abitudini naturali, causando una drastica riduzione del loro numero. Gli uccelli, ad esempio, sono abituati a cacciare di notte e di conseguenza sono attratti dalle luci artificiali delle città. La loro curiosità è così forte che spesso collidono contro le costruzioni o le torri illuminate. A volte, attirati dalla luce, non riescono più a tornare indietro nel loro habitat naturale più buio e precipitano al suolo a causa dello sfinimento fisico. È stato registrato, inoltre, che un numero elevato di uccelli marini sfortunatamente impattano contro i fari o le turbine eoliche. Gli anfibi e i rettili non sono meno influenzati. Le tartarughe marine, in particolare, hanno l’abitudine di muoversi sulla spiaggia buia alla ricerca di una zona sicura per depositare le loro uova. In seguito ritornano nell’oceano attirati dal riflesso della Luna. Il nostro satellite fino a qualche anno fa era l’illuminazione naturale maggiore sull’oceano, permettendo dunque alle tartarughe di ritornare nel loro habitat. Le luci artificiali odierne, invece, catturano l’attenzione delle tartarughe  che si allontanano così dall’oceano e giungono sulle strade, dove oltre a disidratarsi, possono disorientarsi e mettere in pericolo la propria vita.

Gli insetti, similmente, sono attratti dalla luce dei lampioni e vi volano vicino per tutta la notte. Di conseguenza hanno meno energia per l’accoppiamento e possono inoltre diventare delle facili prede. La diminuzione nel numero degli insetti incide di conseguenza su quegli animali che basano su di loro il proprio sostentamento.

Contro il dilagante problema dell’inquinamento luminoso è stata indetta una particolare campagna internazionale di sensibilizzazione, il programma Globe at Night che ha lo scopo infatti di rendere consapevoli i cittadini in tale disagio catapultandolo direttamente nel problema concreto. Lo scopo della campagna è quello di determinare la luminosità del cielo notturno da parte di chiunque sia interessato.

Le osservazioni effettuate dai cittadini saranno poi inviate ad un computer centrale, utilizzando una particolare applicazione reperibile sul sito. I dati così raccolti da tutto il mondo permetteranno di valutare la variazione dell’inquinamento luminoso durante l’Anno Internazionale della Luce. Per contribuire a questa utile campagna si devono svolgere le 5 semplici azioni di seguito descritte:

  1. si individua la costellazione da osservare tra quelle proposte dal sito web http://www.globeatnight.org/ (poiché siamo a Marzo l’unica costellazione proposta ed osservabile alle nostre latitudini è la costellazione di Orione);

  2. tramite il sito si può determinare la latitudine e la longitudine del luogo dalla quale si sta effettuando l’osservazione;

  3. dopo circa un’ora dal tramonto si può uscire all’aperto e far abituare l’occhio al buio per circa 10 minuti;

  4. si procede all’individuazione della costellazione, valutando la luminosità del cielo grazie alle 7 carte di magnitudine presenti sul sito; si deve inoltre annotare la quantità di nuvole presenti durante l’osservazione;

  5. tramite l’applicazione reperibile al sito http://www.globeatnight.org/webapp/ si segnala la data, la latitudine e la longitudine del luogo, la cartina della costellazione scelta con il grado di magnitudine rilevato, la misura delle nuvole che coprivano la costellazione al momento dell’osservazione e si inviano i dati. L’osservazione potrebbe venir effettuata in più luoghi, così da confrontare i risultati ottenuti.

Si possono effettuare le osservazioni durante tutto il 2015, seguendo però i periodi specifici dedicati ad alcune costellazioni dell’emisfero nord:

  • dall’11 al 20 Marzo l’attenzione sarà focalizzata su Orione;

  • dal 9 al 18 Aprile e dal 9 al 18 Maggio si potrà osservare la costellazione del Leone;

  • dall’8 al 17 Giugno e dal 7 al 16 Luglio sarà la volta della costellazione Boote;

  • dal 5 al 14 Agosto e dal 3 al 12 Settembre la costellazione del Cigno sarà la successiva;

  • dal 3 al 12 Ottobre si potrà effettuare la valutazione della magnitudine del cielo focalizzando l’attenzione sulla costellazione di Pegaso;

  • infine dal 2 all’11 Novembre e dal 2 all’11 Dicembre si concluderà l’osservazione con la costellazione di Perseo.

http://www.nature.com/srep/2013/130516/srep01835/images/srep01835-f1.jpg

Di seguito vengono descritte alcune indicazioni utili per rintracciare le 6 costellazioni boreali scelte dalla campagna durante i vari mesi del 2015.

Spettacolare vista d'insieme della costellazione di Orione e dei relativi complessi nebulari, capolavoro dell'astrofotografo Rogelio Bernal Andreo

Spettacolare vista d’insieme della costellazione di Orione e dei relativi complessi nebulari, capolavoro dell’astrofotografo Rogelio Bernal Andreo

Per identificare la costellazione di Orione, che spesso rimanda alla mente la figura di una clessidra, ma rappresenta in realtà un cacciatore, è utile individuare innanzitutto la Cintura di Orione, un asterismo di tre stelle luminose disposte in linea retta. Successivamente, una delle gambe di Orione è rappresentata da una delle stelle più luminose del cielo: la supergigante blu Rigel (beta Orionis). Questa stella ha una temperatura superficiale elevata, pari a circa 12000°K, e per questo appartiene alla classe spettrale B8Ia. Le spalle di Orione sono individuate dalla gigante blu Bellatrix (gamma Orionis) e dalla supergigante rossa Betelgeuse (alpha Orionis), la stella spesso più luminosa della costellazione, la cui classe spettrale è  M2Iab. Betelgeuse è nell’ultima fase della propria evoluzione: dopo aver esaurito le riserve di Idrogeno (H) che sono state convertite in Elio (He) al seguito delle reazioni di fusione nucleare che avvengono nel nucleo stellare, è uscita dalla fase di sequenza principale. Ora la stella sta convertendo He in Carbonio (C) e le successive reazioni di fusione nucleare all’interno del nucleo, permetteranno la conversione di C in Ossigeno (O), la conversione di O in Neon (Ne), la conversione di Ne in Magnesio (Mg), la conversione di Mg in Silicio (Si) e infine la conversione di Si in Ferro (Fe). A questo punto sarà una stella “a shell”, ossia sarà composta da strati di materiale differente, dove nello strato esterno vi sarà H, in quello appena più interno He e così via, fino ad arrivare al nucleo ricco di Fe. La produzione di energia tramite le reazioni nucleari è l’unica forza in grado di contrastare il collasso gravitazionale della stella dovuto alla massa che la compone. Quando nel nucleo della stella vi rimane solo il Fe, le reazioni nucleari si arrestano e non viene più prodotta energia. Di conseguenza prevale il collasso gravitazionale e la massa della stella precipita velocemente verso il centro. Nel momento in cui la massa che collassa raggiunge la velocità del suono ad una particolare distanza dal centro si crea un’onda di shock che porta all’espulsione di tutto il materiale esterno a tale regione, fenomeno noto come supernova. Il materiale interno, invece, continua a collassare e a seconda della massa può divenire una stella di neutroni (se la massa è minore a 3 M*) o un buco nero (se la massa è maggiore a 3 M*). Si prevede che Betelgeuse fra circa 100000 anni esploderà in una supernova e diverrà una stella di neutroni.

A sud della Cintura vi è la Spada di Orione, un asterismo composto da due stelle multiple, dalla Grande Nebulosa di Orione (M42) e dalla nebulosa M43. La M42 è una nebulosa diffusa ad emissione (già descritta nell’articolo Il Braccio di Orione), un ammasso di gas ricco di H e giovani stelle. Infatti la Nebulosa di Orione è la regione di formazione stellare più vicina a noi, a circa 1500 a.l. di distanza dal Sistema Solare. Gli atomi di gas che compongono la nebulosa sono responsabili della sua luminosità: la radiazione proveniente dalle stelle viene assorbita dagli atomi che si eccitano, occupando un livello di energia superiore a quello fondamentale. Quando gli atomi si diseccitano ritornando nello stato energetico fondamentale, emettono fotoni con un’energia corrispondente alla differenza di energia dei due livelli coinvolti. La M42 è vicina ad un altro ammasso di gas e stelle, indicato come M43. Questa è una nebulosa ad emissione e riflessione, quindi gli atomi di gas presenti in M43 oltre ad emettere radiazione elettromagnetica, riflettono la luce che proviene dalle stelle vicine.

Sempre a sud della Cintura di Orione vi è una nebulosa oscura, conosciuta come Orion’s Horsehead Nebula, ossia Nebulosa Testa di Cavallo (B33). Questa nube di polvere interstellare ha casualmente assunto la forma che rimanda alla testa di un cavallo, venendo modellata dai venti stellari. La nube di polvere opaca di cui è composta B33 assorbe la radiazione ma il suo profilo è facilmente visibile grazie alla radiazione rossastra proveniente dalla nebulosa ad emissione retrostante (IC434). Tale radiazione viene emessa al seguito della ricombinazione di protoni ed elettroni per formare atomi di H. In basso a destra della Testa di Cavallo vi è invece una nebulosa a riflessione, che riflette appunto la luce proveniente dalla giovane stella blu al suo interno. All’interno della nebulosa B33 (la dimensione della “Testa” è di 5 a.l.) vi è una grande quantità di stelle che si stanno attualmente formando.

Un altro importante oggetto Messier presente nella costellazione di Orione è M78. Questa è una nebulosa a riflessione, che insieme a M42 e B33 fa parte del Complesso Molecolare di Orione. M78 è caratterizzata da un filamento di polvere opaca che riflette ed assorbe la radiazione proveniente dalle giovani stelle blu al suo interno (dotate di temperature intorno ai 30000°K), conferendo a questa nebulosa un aspetto minaccioso.

Per individuare la costellazione del Leone, invece, si può ricorrere all’aiuto del Grande Carro. Prolungando la retta che congiunge le due stelle del lato minore dell’Orsa Maggiore verso Nord si giunge alla stella polare, mentre se ci si muove verso Sud si individua la testa del Leone rappresentata da un triangolo rettangolo. L’intera costellazione è simile ad un arco e la stella più luminosa è Regolo, in realtà un sistema binario.

La costellazione di Boote (o anche Bifolco, poiché rimanda alla figura di un contadino) è estremamente semplice da individuare grazie alle tre stelle della coda del Grande Carro. Infatti, seguendo la disposizione ad arco di questi astri, si giunge alla stella più luminosa della costellazione di Boote, Arturo (che rappresenterebbe la vita del contadino). Le restanti stelle della costellazione formano un aquilone, mentre le stelle meno luminose sotto Arturo individuano le gambe del bracciante agricolo.

Il Cigno è una costellazione estiva che si sovrasta la Via Lattea. Questo volatile astronomico ha la forma di una croce, dove l’asse maggiore è formato dalle stelle Deneb e Albireo, mentre quello minore da Gienah e Rukh. La stella Sadr è il punto di intersezione tra i due assi. Per maggiori informazioni sugli oggetti astronomici compresi all’interno di questa costellazione si può fare riferimento all’articolo La costellazione del Cigno.

Pegaso è una costellazione autunnale che raffigura il cavallo alato guidato da Perseo per liberare Andromeda dal mostro marino, rappresentato dalla costellazione della Balena. Si individua facilmente il corpo del cavallo alato cercando il quadrato che costeggia la Via Lattea. La testa e il resto del corpo si estendono all’esterno del quadrato.

La costellazione invernale di Perseo è composta da stelle che sono disposte in modo tale da somigliare ad un cosiddetto “osso a forchetta”. La stella più luminosa rappresenta il petto di Perseo.

La campagna Globe at Night ha già raccolto 5512 osservazioni provenienti da 65 Stati ma i dati osservativi sono in costante aumento. Nel grafico seguente è riportato il numero di osservazioni effettuate dall’inizio di Gennaio 2015 ad oggi, 15 Marzo.

Di seguito invece è riportato un grafico che illustra il grado di magnitudine del cielo registrato nelle diverse osservazioni.

Il grado di magnitudine 0 implica l’impossibilità di osservare la costellazione cercata o per via di un eccessivo inquinamento luminoso o per la presenza di fitte nubi. Nel diagramma accanto si nota come il 70% delle osservazioni che hanno registrato una magnitudine 0 avvenivano in presenza di un cielo non molto limpido, poiché più del 50% era coperto da nuvole. Di conseguenza tale risultato non è legato all’inquinamento luminoso ed è per questo motivo che nel grafico sovrastante il valore 0 non è stato rappresentato. Figura 19: Grafico che descrive le condizioni di nuvolosità del cielo durante le osservazioni che hanno fornito un grado 0 di magnitudine. Si evidenzia come la maggior percentuale delle osservazioni (70%) sono avvenute in presenza di una nuvolosità maggiore del 50%.

Chiunque voglia partecipare attivamente nella lotta contro l’inquinamento luminoso può farlo aderendo alla campagna Globe at Night. Il mondo purtroppo non può salvarsi da solo ed un piccolo contributo da parte di ognuno di noi può condurre ad un grande cambiamento. Come ogni singolo pezzo è importante per completare un puzzle, così una giusta azione da parte di tutti noi è fondamentale per salvare il pianeta Terra.  

Il drammatico peggioramento dell’Inquinamento luminoso sul Salento in soli 2 anni. Quasi non esiste più alcun luogo in cui ci sia una parvenza di buio. In un momento di crisi come l’attuale è uno dei modi più stupidi di sprecare le risorse comunali faticosamente raccolte aumentando a dismisura le tasse ai cittadini. Data courtesy of Earth Observation Group (EOG) NOAA.

Destinazione Spazio. Introduzione alle missioni spaziali – Margherita Maglie

 

28/04/2015 ore 10:30. Il centro di controllo ha deciso che proverà una nuova comunicazione nel passaggio durante la prossima orbita.

28/04 ore 11:00. L’orbita risulta regolare anche se più alta del previsto. Si sono aperte due delle cinque antenne, si cercherà di ripristinare il controllo nelle prossime orbite.

28/04 ore 23:00. Immagini e dati dicono che sta ruotando su se stesso fuori controllo.

28/04 ore 23:30. Si cercherà di ristabilizzare l’orbita, ma è possibile un rientro incontrollato in atmosfera.

La missione dedicata alla capsula Progress M-27M lanciata da Baikonur, in Kazakistan, martedì scorso, e carica di rifornimenti destinati alla Stazione Spaziale Internazionale, è stata dichiarata ufficialmente fallita il 30 Aprile. Dopo essere stato inserito in un’orbita di parcheggio in attesa di un attracco posticipato alla ISS, il modulo si è dimostrato completamente fuori controllo costringendo i controllori di volo a interrompere le trasmissioni e rinunciare ad un ulteriore tentativo di ripristino dell’assetto.

L’ultimo incidente legato ad una capsula Progress risaliva al 2011: il cargo russo m-12m andò distrutto a causa del malfunzionamento del terzo stadio del razzo vettore Soyuz pochi minuti dopo il lancio. La commissione di stato russa è alla ricerca delle cause dell’incidente e il vice primo ministro russo Rogozin non ha nascosto la possibilità di una eventuale sostituzione del personale incaricato alla missione. Risalire alle cause di un incidente del genere comporta ovviamente un grande imbarazzo della scelta: una missione spaziale è frutto del coordinamento di tanti sottosistemi che coinvolgono non solo i vari mezzi di lancio e trasporto ma anche tutto il personale umano incaricato di seguire i processi relativi ad ogni fase pre, durante e post lancio.

Cosa intendiamo quindi quando parliamo di missione spaziale?

Sostanzialmente una missione spaziale è composta da un insieme di elementi che raggruppiamo in sottosistemi. Fra i principali:

OGGETTO DELLA MISSIONE: perché questa missione?

SEGMENTO SPAZIALE (Spacecraft, S/C): insieme di hardware e software che interagiscono con l’oggetto della missione; in particolar modo nella definizione di s/c rientrano il tipo di payload (carico pagante), il quale determina il costo e la complessità della missione (esperimenti, attrezzatura..) e lo Spacecraft bus, che supporta il payload provvedendo al mantenimento dell’orbita, alla fornitura di potenza, alla gestione dei comandi, delle telemetrie e delle informazioni, al controllo della temperatura…

SISTEMA DI LANCIO (Launch System): include il servizio di lancio, il veicolo di lancio, l’upper stage richiesto per posizionare lo S/C in orbita, l’equipaggiamento di supporto da terra.

GEOMETRIA: tutto ciò che concerne l’orbita (nel caso di satelliti) o il path (la traiettoria, nel caso di sonde come Rosetta); nel caso dei satelliti, lo spacecraft è lasciato in un’orbita di parcheggio, è portato poi in quella di trasferimento da cui raggiunge quella operativa.

 COMUNICAZIONE: avviene sia in downlink e uplink, quindi le informazioni viaggiano sia dalla Terra al satellite che viceversa. Il Ground control station (stazione di controllo di terra) assolve tale compito.

SISTEMA DI TERRA (Ground System): comprende le stazioni di terra fisse e mobili attorno al globo che consentono di comandare ed eseguire il tracking (il rintracciamento via radio) dello s/c , ricevere e processare telemetrie e dati di missione e distribuire informazioni.

OPERAZIONI DI MISSIONE (Mission Operations): è l’insieme delle persone coinvolte nel ground e space segment, che assistono le procedure e i flussi di dati.

Come è abbastanza logico credere dunque, l’attività legata ad una missione non inizia solo al momento del lancio: la progettazione e l’assemblaggio stessi di uno spacecraft richiedono un certo tempo, addirittura 4 o 5 anni, periodo in cui componenti e sottosistemi sono immagazzinati ad opportune condizioni ambientali, al fine di non provocarne la degradazione. L’ambiente pre-lancio è infatti l’unico relativo alla missione su cui si abbia una certa possibilità di controllo delle condizioni ambientali, al contrario delle fasi successive, quella di lancio e quella di attività in orbita, in cui il nostro potere si limita alla difesa dall’ostilità proveniente dai fattori esterni. Alla fase del lancio sono legati ad esempio rumori estremamente forti e potenti shock termici da cui si generano altrettanto forti vibrazioni che provano notevolmente la struttura esterna del veicolo. Tali condizioni differiscono molto sia da quelle testate in laboratorio che da quelle che lo s/c incontrerà poi nello spazio, in cui la progressiva rarefazione (fino alla scomparsa) dell’atmosfera porta ad una rapida diminuzione di pressione esterna. Le vibrazioni ed i rumori sono dovuti essenzialmente al funzionamento dei motori principali ed all’attrito generato dal movimento dello S/C nelle zone più basse dell’atmosfera, in cui la densità di aria è maggiore; per via di questo “sfregamento” in aria della superficie dello s/c si genera anche un campo di temperature molto elevate.

La fase del lancio risulta dunque estremamente caotica, in particolar modo in due momenti cruciali: il LIFT-OFF (decollo), in cui la produzione di scarichi da parte dei motori verso terra è massima e dunque, per la legge di azione-reazione di Newton, lo è anche la sollecitazione di risposta verso la struttura del razzo; tale effetto si smorza naturalmente all’aumentare dell’altitudine, ma durante l’ascesa si verifica un secondo picco di caos, in cui il veicolo viaggia in TRANSONICO, una fase in cui cioè in punti diversi della superficie dello S/C si hanno velocità di volo diverse, alcune sotto l’unità (Mach<1), altre sopra il sonico. Tale situazione genera degli urti sulla superficie, da cui si genera un disturbo del flusso che diventa instabile.  In breve, il numero di Mach (M) è dato dal rapporto tra la velocità di volo relativa  V e la velocità del suono C, la quale è proporzionale alla radice della temperatura del fluido in cui è immerso il velivolo (nel nostro caso l’aria). Per valori del numero di Mach inferiori all’unità (M<1) dunque il generico velivolo viaggia in regime subsonico e il flusso attorno alla sua superficie ad opportuni valori di incidenze non genera disturbi. Per M=1 si passa al regime sonico, in cui cioè il velivolo ha una velocità pari a quella che ha il suono nel mezzo in cui sta viaggiando: per intenderci, il rumore provocato dal suo passaggio e l’arrivo fisico del velivolo sono contemporanei! Per M>1 il regime è supersonico; in tali condizioni la compressione del flusso sulla superficie del velivolo è tale da provocare la nascita di urti che creano disturbo. Superare il valore unitario del Mach significa rompere il muro del suono; quest’ultimo è un intenso fronte di pressione che, quando è attraversato, provoca delle fortissime vibrazioni alla struttura dell’aereo. Il caso di volo transonico corrisponde ad una situazione in cui le velocità relative di volo nei punti della superficie lungo l’asse longitudinale del velivolo hanno valori compresi nel range 0.8<M<1.2, a metà quindi fra l’alto subsonico e il basso supersonico.

La foto, risalente al Luglio 1999, ritrae un F/A-18 Hornet nell’istante in cui rompe la barriera del suono; il cono bianco è un effetto molto raro da osservare: esso infatti si rende visibile solo per delle condizioni di umidità e temperatura tali per cui si abbia la condensazione del vapore acqueo disciolto in atmosfera.

Il lift-off dell’Apollo 11 nella storica missione verso la Luna

Una volta comunque superata la fase del lancio, in cui gli “stadi” del lanciatore, esaurita la propria percentuale di carburante, si separano dallo stesso, finalmente lo spacecraft arriva nello spazio.

Per convenzione, lo spazio inizia all’altitudine per cui un oggetto messo in orbita è in grado di rimanere in orbita per un breve periodo, prima che l’attrito generato dalle particelle (se pur in bassissima concentrazione) di atmosfera lo rallenti eccessivamente fino a farlo precipitare verso la Terra. Dovendo stabilire una quota indicativa, si fa riferimento ad un’altezza di circa 130 km sul livello del mare. Per quanto riguarda le orbite terrestri, se ne contano due tipi: quelle LEO (Low Earth Orbit) e quelle GEO (Geostationary Earth Orbit); le prime, tra le quali rientra ad esempio l’orbita della ISS, come dice il nome stesso sono orbite “basse”, comprese fra i 200 e i 2000 km di altitudine, il cui limite inferiore è imposto da un grado di rarefazione di atmosfera accettabile; il periodo di rivoluzione di queste orbite è in media di 90 o 100 minuti. Per evitare eccessivi ritardi nelle trasmissioni dovuti alle grandi distanze, le orbite LEO sono preferite alle GEO per quanto riguarda le comunicazioni.

Le GEO sono invece orbite che vengono completate a una quota di 36000 km sul livello del mare. Orbitare a tale altitudine consente infatti allo spacecraft di coprire sempre lo stesso punto del pianeta; il periodo di rivoluzione per tali satelliti sarà dunque di ben 24 ore! Per definire un’orbita tuttavia non è sufficiente parlare di quote: alcuni altri parametri sono fondamentali in quanto possono influenzare il dimensionamento dei pannelli solari; fra questi, l’inclinazione del piano orbitale, l’angolo formato dal piano orbitale con la congiungente Terra-Sole. Rimanendo su uno studio più generale invece sicuramente son da definire la forma dell’orbita (più o meno eccentrica), il periastro e l’apoastro. 

Mi è stato chiesto una volta come fosse possibile trasportare a bordo di una navicella spaziale tanto carburante da consentirle di rimanere in orbita intorno alla Terra per tanto tempo; ebbene, non vi è alcun bisogno di carburante! Così come accade per la Terra con il Sole infatti, anche i satelliti messi in orbita obbediscono alle leggi di Keplero: i satelliti descrivono dunque orbite ellittiche attorno al pianeta, percorrendo le medesime aree comprese in archi di ellisse nel medesimo tempo e mantenendo costante il rapporto fra il cubo del semiasse maggiore della propria orbita ed il quadrato del periodo di rivoluzione. D’altro canto, è vero che può essere necessario utilizzare periodicamente dei motori secondari appositi per ristabilire l’orbita ad una quota opportuna, come nel caso della ISS che ad una quota di circa 400 km risente ancora dell’attrito dell’atmosfera terrestre.

Un esempio di flyby. Trattandosi in questo caso di una cometa in fase di passaggio spontaneo vicino ad un pianeta, la “manovra” è imposta dalle leggi fisiche; la medesima cosa vale per i satelliti in transito vicino ad un pianeta se però imponiamo a monte il fatto che ovviamente la traiettoria di un satellite debba essere studiata a tavolino prima del lancio e che dunque il suo passaggio vicino ad un pianeta che si trova in un determinato punto della sua rivoluzione intorno al Sole sia tutt’altro che casuale.

Sebbene dunque mantenere l’orbita attorno ad un pianeta a determinate condizioni sia scritto nelle leggi della fisica, mantenere il controllo di uno s/c è qualcosa di meno naturale. Non solo infatti a volte la necessità è quella di raggiungere un pianeta ben più lontano della Terra, effettuando manovre studiate come i flyby che sfruttano la gravità di un pianeta per generare il cosiddetto “effetto fionda” e spararlo verso la traiettoria di interesse, ma ben più complicato è il controllo di attitude (assetto), ossia la rotazione del satellite attorno al suo centro di massa. Si è ipotizzato che proprio la perdita del controllo d’assetto, dovuta probabilmente ad uno sgancio troppo violento dagli altri stadi, possa aver portato alla failure (fallimento) della missione Progress.  

Gradi di libertà del corpo dello S/C relativi all’assetto; così come accade in aeronautica, la rotazione intorno all’asse x prende il nome di rollìo, quella intorno all’asse y di beccheggio infine quella intorno all’asse z di imbardata.

 Per il controllo dell’assetto di uno S/C son installati a bordo due sistemi appositi, ADCS (Attitude Determination and Control System) e GN&C (Guidance, Navigation & Control), che prevedono l’utilizzo di due tipi di metodi, attivi e passivi; rispettivamente, gli uni generano delle coppie di controllo in base ai dati rilevati, mentre gli altri sfruttano gli aspetti negativi a proprio vantaggio.

Tra i metodi attivi ad esempio rientrano le reaction wheels (ruote di reazione), il cui principio di funzionamento è la conservazione del momento angolare del satellite; in pratica, si mette in rotazione una massa all’interno del satellite e questo, per reazione, prenderà a ruotare nel verso opposto. Per avere il controllo completo sul satellite ovviamente si avrà una ruota per ogni asse.

La stabilizzazione magnetica invece è uno dei metodi passivi più semplici: si applicano al satellite dei magneti permanenti orientati in modo tale da allineare uno degli assi body dello s/c alle linee di campo magnetico terrestre.

Reaction wheel del satellite Kepler

Solitamente nella fase EOL (End Of Life, o fine vita) del satellite si usa abbandonarne intenzionalmente il controllo dell’altitudine e dell’assetto provocandone la caduta verso la Terra lungo una traiettoria prevista in un certo corridoio di rientro. Rientrando in atmosfera poi, il satellite brucia per via dell’attrito, seminando solo dei piccoli detriti che nella maggior parte dei casi raggiungono il mare. La stessa sorte toccherà a Progress, di cui si è ufficialmente perso il controllo Mercoledì scorso e che si prevede raggiungerà la Terra tra il 7 e l’ 11 di Maggio. Per lei tuttavia nessuna certezza sulla traiettoria di rientro e nessuna garanzia sulla completa combustione in atmosfera: due tonnellate tra rifornimenti alimentari e strumenti di supporto agli esperimenti scientifici inizialmente diretti verso la Stazione Spaziale fluttuano liberi sulle nostre teste e, si sa, la scienza è dura a morire.

The Progress M-26M spacecraft on final approach to the International Space Station.

Attenzione dunque, pare che nei prossimi giorni le Aquaridi non saranno le uniche meteore visibili in cielo!  

Il Braccio di Orione – Anna Galiano

Nel primo appuntamento sulla Via Lattea abbiamo descritto la struttura a spirale barrata della nostra galassia. Dal centro di essa si dipartono dei bracci a spirale logaritmica, alcuni principali ed altri secondari, come il Braccio di Orione (o Local Arm o Sperone di Orione). Ma è realmente così? Studi attuali stanno pian piano ribaltando le nostre certezze sulle reali dimensioni e posizionamento del Local Arm. Ma procediamo con ordine.

Il nostro Sistema Solare giace nella parte interna del Local Arm, la cosiddetta “zona abitabile galattica” ad una distanza dal centro della galassia di circa 26000 a.l.. Lo spessore del Local Arm è di 3500 a.l. ed ha una lunghezza di 10000 a.l. La nostra posizione periferica nella Via Lattea è stata scoperta dall’astronomo americano Harlow Shapley agli inizi del XX secolo. Grazie alle sue osservazioni non solo evidenziò che la nostra galassia era più grande di quanto ritenuto fino ad allora ma, grazie alle proprie convinzioni copernicane, comprese che la Terra con i suoi egocentrici terrestri, oltre a non essere il centro del Sistema Solare, non è neanche il centro della Via Lattea. Non è stato facile riuscire a capire la nostra posizione nella Via Lattea poiché siamo all’interno di essa, ma Shapley osservando i corpi celesti all’esterno della fascia biancastra che solca i nostri cieli notturni (la galassia osservata di taglio) riuscì ad individuare degli ammassi globulari che presentavano una luminosità ed una concentrazione di stelle maggiore in certe direzioni mentre si diradavano pian piano in altre. Da qui ipotizzò che la Terra giace in una regione periferica della Via Lattea dato che si ha una maggiore concentrazione di stelle in corrispondenza della costellazione del Sagittario, in cui doveva trovarsi quindi il centro galattico. Queste ipotesi hanno trovato definitiva conferma nelle indagini radioastronomiche sviluppatesi dopo la seconda guerra mondiale.

Fino a poco tempo fa si aveva la convinzione che il Braccio di Orione fosse un ramo secondario della nostra spirale, una struttura stellare minore compresa tra due più estese, il braccio interno del Sagittario e quello più esterno di Perseo. Recenti indagini da parte di Xu et al. (2013) mediante lo studio della cinematica e della distanza (usando il metodo della parallasse trigonometrica) di un campione di 30 masers distribuiti lungo il Local Arm hanno contribuito a modificare tale concezione. I masers sono dei corpi celesti, tipicamente all’interno di nubi molecolari, il cui nome è un acronimo che significa “amplificazione di microonde per effetto di emissione stimolata di radiazione”. In seguito ad una collisione oppure per via di irraggiamento esterno, alcuni composti come acqua (H2O), metanolo (CH3OH) o radicali idrossili (OH) vengono “pompati” dallo stato energetico fondamentale fino a popolare un livello metastabile, da cui decadono successivamente su uno di energia inferiore emettendo radiazione con basse frequenze, le microonde. Nello spettro di emissione di questi oggetti le righe che evidenziano tale fenomeno risultano essere molto strette, adatte perciò per accurate misurazioni. Il metodo della parallasse trigonometrica (Figura 2) consiste nel registrare la collocazione dell’oggetto considerato rispetto allo sfondo celeste da due posizioni differenti dell’orbita terrestre a distanza di 6 mesi l’una dall’altra. In questo modo, nota la distanza (d) Terra-Sole (pari ad 1 UA) e l’angolo A sotteso dall’oggetto, si può ricavare la distanza oggetto-Sole (x), mediante la formula seguente: x=d/tangA

Con i risultati ottenuti Xu e colleghi hanno notato che questi oggetti si comportano come se stessero in un braccio principale della spirale. L’unico punto a sfavore del lavoro appena esposto è quello di aver considerato una regione di indagine attorno al Sole molto limitata, di circa 28000 a.l. rendendo così difficile dichiarare con certezza che il Braccio di Orione sia un braccio principale della nostra galassia.

Ma precedenti indagini focalizzate su regioni più estese, come gli ammassi stellari aperti ad opera di Moitinho et al. (2006) e Vézquez (2008) hanno messo in luce un comportamento analogo da parte di altri oggetti presenti nel Local Arm. Pare, quindi, che il Braccio di Orione sia un vero e proprio braccio principale indipendente della nostra galassia, costituito da un’ampia regione di formazione stellare, o in alternativa una diramazione del Braccio di Perseo. A sostegno di quest’ultima ipotesi si nota come in effetti, il Local Arm sia più vicino al Braccio di Perseo piuttosto che a quello del Sagittario e che anzi, attraversi il Braccio di Perseo prima di giungere nel Braccio più esterno, il Norma Arm. Questa conclusione comporterebbe dimensioni maggiori del Braccio di Orione ed un possibile passo indietro nel considerare quello di Perseo come un braccio principale.

Si sa ormai da secoli che la Luna ruota attorno alla Terra e che la Terra e gli altri pianeti ruotano attorno al Sole, così analogamente il Sole e per estensione il Sistema Solare compie un moto di rivoluzione attorno al centro galattico. Si ritiene che l’orbita del Sole attorno alla galassia sia ellittica, per via delle perturbazioni esercitate dai bracci a spirale della stessa e da una distribuzione non uniforme della massa. La direzione verso cui il Sole si muove (chiamata solar apex) punta verso la stella Altair. Il tempo impiegato dal Sistema Solare a compiere una rotazione attorno alla galassia è stato stimato di circa 225-250 milioni di anni, quindi considerata l’età del Sole di oltre 4 miliardi di anni, sembra che la nostra stella abbia ripercorso tale orbita per 18-20 volte nella sua vita. La velocità orbitale del Sistema Solare rispetto al centro della galassia è stato stimato in circa 220 Km/s. Il Sistema Solare si sta attualmente muovendo all’interno di una nube del mezzo interstellare chiamata Local Interstellar Cloud, posta all’interno di una cavità del Braccio di Orione e costituita da materiale con ridotta densità ed alta temperatura, nota come Local Bubble. Tutto ciò è racchiuso nella cosiddetta Gould Belt. Quest’ultima è un insieme di stelle brillanti e massive la cui proiezione in cielo assume la forma di un anello ed è inclusa in una nube molecolare che incrocia le zone interne alla Via Lattea, corrispondenti a quelle in cui si ha una maggiore concentrazione di regioni di formazione stellare.

Il Braccio di Orione prende il nome dalla costellazione di Orione verso cui sembra proiettarsi la sua regione più ricca. Contiene diversi oggetti Messier ossia un elenco di un centinaio di corpi celesti come nebulose, galassie e ammassi stellari individuati ed annotati principalmente dall’astronomo francese Charles Messier, con l’aiuto del suo collega Pierre Méchain e pubblicato nel 1771. Messier era un cacciatore di comete e durante le sue ricerche aveva elencato su di una lista gli oggetti che non erano delle comete pur presentando delle somiglianze, in modo da poterli escludere e facilitare così la sua indagine. Messier visse e fece le proprie ricerche in Francia perciò nella sua lista si trovano solo oggetti che potevano essere osservati nell’emisfero nord: ad esempio le Nubi di Magellano, visibili nell’emisfero australe non sono presenti in quegli appunti. La lista compilata da Messier è stata con il tempo estesa da parte di altri astronomi divenendo un’importante raccolta di oggetti del profondo cielo.

Alcuni degli oggetti Messier presenti nel Local Arm sono:

Messier 7: è un ammasso aperto di stelle all’interno della costellazione dello Scorpione, posto nei pressi del pungiglione dell’aracnide, facilmente visibile ad occhio nudo. Noto già agli antichi romani, era stato scoperto dall’astronomo Tolomeo e scambiato per una nebulosa: da qui nasce il nome alternativo degli anglosassoni con cui viene riconosciuto questo oggetto, Ptolemy Cluster. L’età stimata di questo ammasso è di 220 milioni di anni e contiene al suo interno circa 80 stelle di differente magnitudine.

Messier 23: altro ammasso di stelle, nella costellazione del Sagittario, facilmente visibile nelle notti estive anche utilizzando dei semplici binocoli. Scoperto da Messier il 20 Giugno 1764, è stata provata la presenza di almeno 150 stelle al suo interno, alcune di magnitudine 10 fino a quelle di magnitudine maggiore di 13.5. L’età stimata è 220 – 300 milioni di anni e il diametro di tale ammasso è pari a 15 a.l..

http://upload.wikimedia.org/wikipedia/commons/thumb/e/e8/M27_-_Dumbbell_Nebula.jpg/595px-M27_-_Dumbbell_Nebula.jpg

In this three-colour composite, a short exposure was first made through a wide-band filtre registering blue light from the nebula. It was then combined with exposures through two interference filtres in the light of double-ionized oxygen atoms and atomic hydrogen. They were colour-coded as “blue”, “green” and “red”, respectively, and then combined to produce this picture that shows the structure of the nebula in “approximately true” colours. Credit: ESO

Dumbbell Nebula (Messier 27): posta all’interno della costellazione della Volpetta, è forse la nebulosa planetaria più bella che popola il nostro cielo ed è stata la prima, tra questo tipo di nebulose, a venir scoperta. Una nebulosa planetaria è una nebulosa ad emissione e corrisponde alla fase finale di una stella che espellendo i suoi strati più esterni genera un involucro di materiale attorno ad essa che si riduce così ad un oggetto di ridotte dimensioni ma molto denso, una nana bianca. Quando Messier la scoprì la registrò, erroneamente, come una nebulosa priva di stelle. M27 è facilmente osservabile anche con piccoli binocoli e i telescopi di moderata risoluzione sono in grado di distinguere la sua caratteristica forma che richiama vagamente quella di una clessidra. La stella centrale ha una magnitudine di 13.5 ed è una calda nana bluastra, con una temperatura di 85000 Kelvin. Si ritiene che vicino ad essa vi sia una debole stella gialla di magnitudine 17.

Come per molte nebulose planetarie, non si conosce ancora con esattezza la distanza che separa M27 da noi (anche se alcuni studiosi hanno ipotizzato distanze comprese tra i 490 e 3500 a.l.) e pertanto non si ha alcun dato certo sulla luminosità e sulle sue reali dimensioni. Il fatto che una nebulosa risulti essere più luminosa della stella al suo interno suggerisce che la stella emette radiazione altamente energetica nella regione non visibile dello spettro elettromagnetico; questa viene assorbita dai gas della nebulosa che eccitandosi e diseccitandosi la riemettono sotto forma di radiazione visibile. Per la maggior parte delle nebulose planetarie si è notato che la radiazione visibile viene emessa ad un’unica lunghezza d’onda, quella corrispondente alla luce verde dell’OIII (5007 Angstrom). Infine, confrontando alcune immagini della Dumbbell Nebula, Leos Ondra ha scoperto una stella variabile situata nella parte esterna della nebulosa, che ha chiamato Goldilocks’ Variable.

m57Ring Nebula (Messier 57): è una nebulosa planetaria nella costellazione della Lira ed è uno dei maggiori protagonisti dell’emisfero boreale estivo. Recenti ricerche hanno portato alla conclusione che, come suggerisce il nome, è un anello di materiale brillante emesso dalla stella posta nel centro. Dalle immagini della nebulosa si nota come il livello di ionizzazione dei gas (la capacità di strappare alle molecole del gas uno o più elettroni) tende a diminuire all’aumentare della distanza dalla calda stella centrale che ha una temperatura di 100000 Kelvin: la regione centrale è scura suggerendo un’emissione di radiazione UV, mentre nella parte interna dell’anello la ionizzazione di ossigeno e azoto conferisce il colore verde, per poi avere un colore rossastro nella parte esterna dell’anello a causa del processo di eccitazione delle sole molecole di idrogeno. La stella al centro della nebulosa planetaria è una nana bianca di magnitudine 15, ed è il residuo di una stella un tempo molto simile al Sole.

Come detto precedentemente, non si sa con esattezza la distanza di una nebulosa planetaria, ma supponendo sia posta a circa 2300 a.l., questa avrebbe una magnitudine assoluta di -0.3 (circa 100 volte quella del Sole). Questa è stata la seconda nebulosa planetaria a venir scoperta nel 1779 ad opera di Antoine Darquier de Pellepoix. Messier quando la notò, la catalogò come una fioca nebulosa ma perfettamente definita. Il nome di “nebulosa planetaria” proviene dalla somiglianza che Herschel notò tra questo tipo di oggetti e il pianeta Urano che aveva appena scoperto. La prima idea che egli si fece della Ring Nebula fu quella di “una nebulosa traforata o un anello di stelle”, ma soprattutto la riteneva “una curiosità dei cieli”.

Messier 41: ammasso aperto nella costellazione del Cane Maggiore; è facilmente individuabile poiché si trova esattamente a sud della stella più luminosa del cielo, Sirio. M41 contiene un centinaio di stelle, tra cui delle giganti rosse e la più luminosa, di magnitudine 6.9 (700 volte più brillante del nostro Sole) è quasi al centro dell’ammasso. Dall’indagine delle giganti rosse all’interno di questo ammasso si è evidenziata una composizione chimica molto simile a quella della nostra stella. Messier 41 si estende per circa 25-26 a.l., l’età stimata è compresa tra i 190 e i 240 milioni di anni e pare si allontani da noi ad una velocità di 34 km/s. ·

Messier 73: è un falso oggetto Messier dato che si è scoperto essere semplicemente un asterismo di 4 stelle principali totalmente indipendenti tra di loro, nella costellazione dell’Acquario. Quando Messier lo scoprì nel 1780 notò un gruppo di 4 stelle immerse in una debole luminosità e per questo motivo lo catalogò insieme agli altri oggetti come un ammasso stellare. Successive osservazioni da parte dell’astronomo inglese John Herschel misero in discussione tale natura poiché quest’ultimo non notò alcuna nebulosità. L’oggetto Messier 73 è stato al centro di un dibattito una decina di anni fa: da un lato Bassino, Waldhausen e Martinez (2000) sostenevano l’idea di ammasso aperto poiché le stelle che lo costituivano seguivano un rapporto colore-luminosità tipico di queste strutture, dall’altro Carraro (2000) riteneva che fosse un semplice asterismo. Quando Odenkirchen e Soubiran (2002) pubblicarono i risultati di un’indagine spettrale ad alta risoluzione delle sei stelle più brillanti poste al centro del Messier 73, rivelando distanze differenti rispetto alla Terra e moti completamente non correlati tra di loro, il dibattito si concluse ritenendo tale oggetto un semplice asterismo.

Messier 78: è una nebulosa diffusa, ossia un’ampia nebulosa con limiti non definiti che può essere una nebulosa a riflessione (nube di polvere interstellare in grado di riflettere la luce delle stelle vicine) o ad emissione, come la M 42. M78 è la più brillante nebulosa a riflessione posta nella costellazione di Orione. Scoperta da Pierre Méchain nel 1780, appartiene al complesso di Orione, nube di gas e polveri all’interno della Nebulosa di Orione (di cui ne parleremo più avanti). La nebulosa in questione, di estensione pari a 4 a.l., brilla della luce riflessa delle due luminose stelle blu di magnitudine 10 vicino ad essa. L’indagine nel campo dell’infrarosso ha evidenziato come M78 sia una regione in cui sta avvenendo la formazione di giovani stelle, contandone al suo interno 192. Sono stati notati  inoltre, dei getti di materiale che vengono espulsi, molto probabilmente, da giovani stelle intrappolate nella nube di gas entro la quale è avvenuta la loro formazione. Questi getti vengono chiamati oggetti Herbig-Haro e ne sono stati rilevati almeno 17. M78 può essere osservata, in assenza di inquinamento luminoso, anche con un semplice binocolo anche se quello che si può notare attraverso le lenti è un oggetto che presenta una forte somiglianza con una cometa.

m42

The Orion Nebula is a picture book of star formation, from the massive, young stars that are shaping the nebula to the pillars of dense gas that may be the homes of budding stars. Credit: NASA,ESA, M. Robberto (Space Telescope Science Institute/ESA) and the Hubble Space Telescope Orion Treasury Project Team

Orion Nebula (Messier 42): è la nebulosa diffusa in emissione più brillante nel cielo, visibile anche ad occhio nudo in condizione moderatamente favorevoli ed è la regione di formazione stellare più vicina a noi. Situata nella costellazione di Orione, è un oggetto che si estende per oltre 1 grado, ossia quattro volte lo spazio occupato dalla luna piena. La nebulosa di Orione fu molto probabilmente scoperta nel 1610 da un legale francese, Nicholas-Claude Fabri de Peiresc, ma rimase celata tra i suoi appunti fino al 1916, quando l’astronomo Bigourdan li rese noti. Altri astronomi però, nel corso dei secoli, la individuarono indipendentemente l’uno dall’altro. E’ alquanto strano che questa nebulosa si trovi all’interno della lista Messier perché questi annotava nel suo catalogo gli oggetti di luminosità moderata che potevano essere scambiati per delle comete. La spiegazione può risiedere nel fatto che Messier abbia registrato questa nebulosa semplicemente per raggiungere facilmente un numero di 45 oggetti nel suo catalogo e pubblicarne così una prima edizione nel 1771, superando la lista di 42 oggetti celesti dell’emisfero australe pubblicata da Lacaille nel 1755.

Questa nebulosa è posta ad una distanza di 1500 a.l., ha un diametro di circa 30 a.l. e nella parte nord essa è troncata da un’evidente linea scura. A nord-est vi è una nebulosa più piccola, anch’essa a emissione (M 43) la cui luminosità è dovuta ai suoi stessi atomi che vengono eccitati dalla radiazione altamente energetica proveniente dalla calda e massiva stella giovane al suo interno. In queste stesse plaghe celesti vi è una regione di formazione stellare, la più giovane finora conosciuta, chiamata Trapezium cluster. Questa, costituita da caldo e luminoso gas ionizzato non è altro che un sottile strato all’interno di una più estesa nube di materiale più denso nominata Orion Molecular Cloud 1 (OMC1).

Beehive Cluster (Messier 44): è un ammasso aperto di stelle nella costellazione del Cancro facilmente visibile ad occhio nudo e per questo motivo, già noto nell’antichità. I greci e i romani vedevano in esso, ritenuto all’epoca una nebulosa, una mangiatoia in cui vi erano due asini a cibarsi, l’Asino Boreale (rappresentato dalla stella γ Cancer) e l’Asino Australe (ossia la stella δ Cancer). Non a caso, questo ammasso è noto anche con il nome di Praesepe, che in latino significa “mangiatoia”. Galileo fu il primo a smascherare la sua vera natura di ammasso stellare riuscendo a risolvere all’interno 40 stelle. Oggigiorno si sa che a questo ammasso appartengono con certezza almeno 200 tra le 350 stelle ipotizzate. Messier 44, distante 577 a.l. e con un’età stimata di 730 milioni di anni presenta una comportamento analogo ad un altro ammasso stellare facilmente visibile ad occhio nudo, le Iadi. Questo, con un’età stimata di 790 milioni di anni, pur non facente parte del catalogo Messier e abbastanza distante da Praesepe, presenta molte similitudini con esso, tanto che si è ipotizzata un’origine comune tra i due ammassi. Un’ulteriore conferma di questa ipotesi è la popolazione stellare al loro interno. Entrambi presentano giganti rosse e alcune nane bianche.

m45

M45: The Pleiades Star Cluster Image Credit & Copyright: Robert Gendler

Pleiadi (Messier 45): è un ammasso aperto nella costellazione del Toro, distante circa 380 a.l.. Ad occhio nudo si riescono a distinguere, a circa 10 gradi a nord-ovest dalla stella gigante rossa Aldebaran, almeno sei membri del gruppo, in condizioni abbastanza favorevoli se ne individuano nove e in zone in cui il cielo è completamente scuro e privo di inquinamento luminoso il numero delle componenti raggiunge la dozzina. Le Pleiadi erano già note ad Omero il quale le cita nelle proprie opere, l’Iliade (in cui adornano lo scudo di Achille) e l’Odissea (le quali aiutano Ulisse ad orientarsi nel cielo durante la sua navigazione per tornare ad Itaca) e sono conosciute con il nome alternativo di “Sette sorelle”. In effetti gli antichi greci riconoscevano in questo ammasso le sette sorelle figlie del padre Atlas e della madre Pleione: Alcyone, Asterope, Electra, Maia, Merope, Taygeta e Celaeno.

E’ stato dimostrato che le stelle all’interno di questo ammasso si muovono nello spazio in gruppo, con un moto comune, confermando l’ipotesi di un ammasso fisico e non di un semplice raggruppamento ottico. Si è notata la presenza di una nebulosa a riflessione nella zona in cui vi sono le Pleiadi, che presenta un colore bluastro poiché riflette la luce proveniente dalle stelle poste nelle vicinanze o al suo interno. Si ritiene però che non vi sia alcun legame tra l’ammasso delle Pleiadi e questa nebulosa a riflessione. L’età stimata di questo ammasso è di 100 milioni di anni e alcuni studi sostengono che le Pleiadi continueranno a mantenere tale aspetto per altri 250 milioni di anni per poi separarsi l’una dall’altra e proseguire per il proprio percorso individuale. Le Pleiadi hanno una velocità di rotazione molto elevata (evidenziata da righe di assorbimento dello spettro elettromagnetico molto spesse) e perciò, molto probabilmente hanno una forma oblata e non sferica. La stella che ruota più velocemente è Pleione, una stella variabile con una magnitudine che varia da 4.77 a 5.50. Una stranezza all’interno di questo ammasso relativamente giovane è la presenza di nane bianche, stelle nell’ultima fase della loro vita e perciò molto vecchie. Molto probabilmente queste stelle, un tempo molto massive, si sono generate all’interno dell’ammasso stesso e non sono state catturate dall’esterno, ma per qualche causa ancora da chiarire hanno perso la maggior parte della propria massa per poi perderne un’altra rilevante percentuale sotto forma di nebulosa planetaria. Le Pleiadi sono situate in prossimità dell’eclittica (il percorso apparente compiuto dal Sole in un anno proiettato sulla sfera celeste) e molto spesso sono occultate dalla Luna fornendo una spettacolare immagine del nostro satellite immerso nella luce emanata dalle “Sette Sorelle”. Dopo questo breve viaggio all’interno del Braccio di Orione ci si rende conto che facciamo parte di un meccanismo complesso e allo stesso tempo affascinante che non possiamo fare altro che ammirare e cercare di comprendere. La nostra indagine si è limitata, però, solo all’interno della Via Lattea; chissà se riusciremo mai a conoscere del tutto l’immenso universo a cui apparteniamo.